Christian
Trigonometrie 1
- Landesbildungsserver BW - Einführung
- Visualisierung von Sin, Cos, Tan in Geogebra
- Visualisierung interaktiv
Trigonometrie 2
- Trigonometrische Funktionen als Potenzreihen
- Geogebra - Approximation trig. Funktionen durch Polynome (interaktiv)
Aufgaben Trigonometrie
Geometrie
Satze des Pythagoras
Potenzen
- Potenzen mit neg. Exponenten umformen
- Potenzwerte berechnen
- Termwerte berechnen (0,9 * 10^8)
- Potenzen zusammenfassen
<!DOCTYPE html> <html class="client-nojs" lang="de" dir="ltr"> <head> <meta charset="UTF-8"> <title>Kehrwert – Wikipedia</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )dewikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,)+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Januar","Februar","März","April","Mai","Juni","Juli","August","September","Oktober","November","Dezember"],"wgRequestId":"0f5e8c36-a60d-4870-ac80-6cedf3de63e6","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Kehrwert","wgTitle":"Kehrwert","wgCurRevisionId":245058555,"wgRevisionId":245058555,"wgArticleId":15271,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":[ "Division (Mathematik)"],"wgPageViewLanguage":"de","wgPageContentLanguage":"de","wgPageContentModel":"wikitext","wgRelevantPageName":"Kehrwert","wgRelevantArticleId":15271,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":245058555,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"de","pageLanguageDir":"ltr","pageVariantFallbacks":"de"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":8000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":true,"wgVector2022LanguageInHeader":false,"wgULSisLanguageSelectorEmpty":false, "wgWikibaseItemId":"Q216906","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.citeRef":"ready","ext.gadget.defaultPlainlinks":"ready","ext.gadget.dewikiCommonHide":"ready","ext.gadget.dewikiCommonLayout":"ready","ext.gadget.dewikiCommonStyle":"ready","ext.gadget.NavFrame":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.styles.legacy":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles":"ready","ext.uls.interlanguage": "ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.createNewSection","ext.gadget.WikiMiniAtlas","ext.gadget.OpenStreetMap","ext.gadget.CommonsDirekt","ext.gadget.donateLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=de&modules=codex-search-styles%7Cext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&only=styles&skin=vector"> <script async="" src="/w/load.php?lang=de&modules=startup&only=scripts&raw=1&skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=de&modules=ext.gadget.NavFrame%2CciteRef%2CdefaultPlainlinks%2CdewikiCommonHide%2CdewikiCommonLayout%2CdewikiCommonStyle&only=styles&skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=de&modules=site.styles&only=styles&skin=vector"> <meta name="generator" content="MediaWiki 1.44.0-wmf.8"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Kehrwert – Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//de.m.wikipedia.org/wiki/Kehrwert"> <link rel="alternate" type="application/x-wiki" title="Seite bearbeiten" href="/w/index.php?title=Kehrwert&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (de)"> <link rel="EditURI" type="application/rsd+xml" href="//de.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://de.wikipedia.org/wiki/Kehrwert"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de"> <link rel="alternate" type="application/atom+xml" title="Atom-Feed für „Wikipedia“" href="/w/index.php?title=Spezial:Letzte_%C3%84nderungen&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head>
<body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Kehrwert rootpage-Kehrwert skin-vector action-view">
<a id="top"></a>
Kehrwert
<a class="mw-jump-link" href="#mw-head">Zur Navigation springen</a> <a class="mw-jump-link" href="#searchInput">Zur Suche springen</a>
Der Kehrwert (auch der reziproke Wert oder das Reziproke) einer von https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"> verschiedenen <a href="/wiki/Zahl" title="Zahl">Zahl</a> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"> ist in der <a href="/wiki/Arithmetik" title="Arithmetik">Arithmetik</a> diejenige Zahl, die mit <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"> <a href="/wiki/Multiplikation" title="Multiplikation">multipliziert</a> die Zahl <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"> ergibt; er wird als <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3da30de216ba1a9649809913816f8b640eb26f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.776ex; height:3.343ex;" alt="{\displaystyle {\tfrac {1}{x}}}"> oder <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbf91609f1a0b7847e108023b015cb6b0d567821" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.662ex; height:2.676ex;" alt="{\displaystyle x^{-1}}"> notiert. <img src="
Eigenschaften
[<a href="/w/index.php?title=Kehrwert&veaction=edit§ion=1" title="Abschnitt bearbeiten: Eigenschaften" class="mw-editsection-visualeditor">Bearbeiten</a> | <a href="/w/index.php?title=Kehrwert&action=edit§ion=1" title="Quellcode des Abschnitts bearbeiten: Eigenschaften">Quelltext bearbeiten</a>]Kernaussagen
[<a href="/w/index.php?title=Kehrwert&veaction=edit§ion=2" title="Abschnitt bearbeiten: Kernaussagen" class="mw-editsection-visualeditor">Bearbeiten</a> | <a href="/w/index.php?title=Kehrwert&action=edit§ion=2" title="Quellcode des Abschnitts bearbeiten: Kernaussagen">Quelltext bearbeiten</a>]<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Hyperbola_one_over_x.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/43/Hyperbola_one_over_x.svg/220px-Hyperbola_one_over_x.svg.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/43/Hyperbola_one_over_x.svg/330px-Hyperbola_one_over_x.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/43/Hyperbola_one_over_x.svg/440px-Hyperbola_one_over_x.svg.png 2x" data-file-width="1600" data-file-height="1200" /></a><figcaption>Der Graph der Kehrwertfunktion ist eine <a href="/wiki/Hyperbel_(Mathematik)" title="Hyperbel (Mathematik)">Hyperbel</a>.</figcaption></figure>
Je näher eine Zahl bei https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"> liegt, desto weiter ist ihr Kehrwert von <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"> entfernt. Die Zahl <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"> selbst hat keinen Kehrwert und ist auch kein Kehrwert. Die durch <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295255af2ebd89bd25ea6119f95ade0f789036a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.546ex; height:3.343ex;" alt="{\displaystyle y=f(x)={\tfrac {1}{x}}}"> beschriebene Kehrwertfunktion (siehe Abbildung) hat dort eine <a href="/wiki/Polstelle" title="Polstelle">Polstelle</a>. Der Kehrwert einer positiven Zahl ist positiv, der Kehrwert einer negativen Zahl ist negativ. Dies findet seinen geometrischen Ausdruck darin, dass der Graph in zwei <a href="/wiki/Hyperbel_(Mathematik)" title="Hyperbel (Mathematik)">Hyperbeläste</a> zerfällt, die im ersten bzw. dritten Quadranten liegen. Die Kehrwertfunktion ist eine <a href="/wiki/Involution_(Mathematik)" title="Involution (Mathematik)">Involution</a>, d. h., der Kehrwert des Kehrwerts von <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"> ist wieder <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d07e9f568a88785ae48006ac3c4b951020f1699a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.977ex; height:1.676ex;" alt="{\displaystyle x.}"> Ist eine Größe <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"> <a href="/wiki/Umgekehrt_proportional" class="mw-redirect" title="Umgekehrt proportional">umgekehrt proportional</a> zu einer Größe <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"> dann ist sie proportional zum Kehrwert von <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d07e9f568a88785ae48006ac3c4b951020f1699a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.977ex; height:1.676ex;" alt="{\displaystyle x.}"> <img src="
Den Kehrbruch eines <a href="/wiki/Bruchrechnung#Gemeine_Brüche" title="Bruchrechnung">Bruches</a>, also den Kehrwert eines <a href="/wiki/Quotient" title="Quotient">Quotienten</a> https://wikimedia.org/api/rest_v1/media/math/render/svg/67e9c32a14514b5b975a4666af015884bc93b0b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:1.706ex; height:3.343ex;" alt="{\displaystyle {\tfrac {a}{b}}}"> mit <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/491acb120732257985e2f7ab789fef7cdf54f767" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.169ex; height:2.676ex;" alt="{\displaystyle a,b\neq 0,}"> erhält man, indem man Zähler und Nenner vertauscht: <img src="
- https://wikimedia.org/api/rest_v1/media/math/render/svg/952a852fd53dd6a4539101d38db0e7d9d37d65f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:7.706ex; height:6.676ex;" alt="{\displaystyle {\frac {1}{\frac {a}{b}}}={\frac {b}{a}}}"> <img src="
Daraus folgt die Rechenregel für das <a href="/wiki/Division_(Mathematik)" title="Division (Mathematik)">Dividieren</a> durch einen Bruch: Durch einen Bruch wird dividiert, indem man mit seinem Kehrwert multipliziert. Siehe auch <a href="/wiki/Bruchrechnung" title="Bruchrechnung">Bruchrechnung</a>.
Den Kehrwert https://wikimedia.org/api/rest_v1/media/math/render/svg/ee46f3d1f145f31319826905e4ce0750792d55b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.822ex; height:3.343ex;" alt="{\displaystyle {\tfrac {1}{n}}}"> einer <a href="/wiki/Nat%C3%BCrliche_Zahl" title="Natürliche Zahl">natürlichen Zahl</a> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"> nennt man einen <a href="/wiki/Stammbruch" title="Stammbruch">Stammbruch</a>. <img src="
Auch zu jeder von https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"> verschiedenen <a href="/wiki/Komplexe_Zahl" title="Komplexe Zahl">komplexen Zahl</a> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d7f54052b27c21d6073ea59a31e499ea689970f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.901ex; height:2.343ex;" alt="{\displaystyle z=a+b\mathrm {i} }"> mit reellen Zahlen <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181523deba732fda302fd176275a0739121d3bc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.261ex; height:2.509ex;" alt="{\displaystyle a,b}"> gibt es einen Kehrwert <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5770006851ba8ff951117476454da2731cd73c25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.305ex; height:3.343ex;" alt="{\displaystyle {\tfrac {1}{z}}.}"> Mit dem <a href="/wiki/Betragsfunktion#Komplexe_Betragsfunktion" title="Betragsfunktion">Absolutbetrag</a> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe94d0c3b0c3704e8771d0932fff6f983ef0082b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.98ex; height:3.509ex;" alt="{\displaystyle |z|={\sqrt {a^{2}+b^{2}}}}"> von <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"> und der zu <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"> <a href="/wiki/Komplexe_Konjugation" title="Komplexe Konjugation">konjugiert komplexen</a> Zahl <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7aa7245b2db6d644ce58741004233134df972e3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.021ex; height:2.509ex;" alt="{\displaystyle {\overline {z}}=a-b\mathrm {i} }"> gilt: <img src="
- https://wikimedia.org/api/rest_v1/media/math/render/svg/6e571b122897385c9f968daede3034bfb41ed961" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:58.97ex; height:6.676ex;" alt="{\displaystyle {\frac {1}{a+b\mathrm {i} }}={\frac {1}{z}}={\frac {\overline {z}}{z{\overline {z}}}}={\frac {\overline {z}}{|z|^{2}}}={\frac {a-b\mathrm {i} }{a^{2}+b^{2}}}={\frac {a}{a^{2}+b^{2}}}-{\frac {b}{a^{2}+b^{2}}}\mathrm {i} }"> <img src="
Summe aus Zahl und Kehrwert
[<a href="/w/index.php?title=Kehrwert&veaction=edit§ion=3" title="Abschnitt bearbeiten: Summe aus Zahl und Kehrwert" class="mw-editsection-visualeditor">Bearbeiten</a> | <a href="/w/index.php?title=Kehrwert&action=edit§ion=3" title="Quellcode des Abschnitts bearbeiten: Summe aus Zahl und Kehrwert">Quelltext bearbeiten</a>]Die Summe aus einer positiven <a href="/wiki/Reelle_Zahl" title="Reelle Zahl">reellen Zahl</a> und ihrem Kehrwert beträgt mindestens https://wikimedia.org/api/rest_v1/media/math/render/svg/9f2b3373a07e65d3312989163b5ebd400af86480" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.809ex; height:2.176ex;" alt="{\displaystyle 2.}"><a href="#cite_note-1"> <img src="[1]</a><a href="#cite_note-2">[2]</a>
- https://wikimedia.org/api/rest_v1/media/math/render/svg/5291484292966bff26e63e310e5a3fc6ba56f702" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.597ex; height:5.176ex;" alt="{\displaystyle x+{\frac {1}{x}}\geq 2}"> <img src="
Beweisvariante 1 (Figur 1):
- https://wikimedia.org/api/rest_v1/media/math/render/svg/4e07f845b4566d52630549d8b419941e8393ab70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:36.137ex; height:6.509ex;" alt="{\displaystyle \left(x+{\frac {1}{x}}\right)^{2}\geq 4\cdot x\cdot {\frac {1}{x}}\Leftrightarrow x+{\frac {1}{x}}\geq 2}"> <img src="
Beweisvariante 2 (Figur 2):
- https://wikimedia.org/api/rest_v1/media/math/render/svg/62b44aa71298390050daad2f39336a3e0514905e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.808ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{x}}\geq 2-x\Leftrightarrow x+{\frac {1}{x}}\geq 2}"> <img src="
Beweisvariante 3 (Figur 3):
- https://wikimedia.org/api/rest_v1/media/math/render/svg/ddc7d3b39e90e80a51ba4b124ae9ef6e1336b98e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.778ex; height:6.509ex;" alt="{\displaystyle \left(x+{\frac {1}{x}}\right)^{2}=2^{2}+\left(x-{\frac {1}{x}}\right)^{2}}"> (nach dem <a href="/wiki/Satz_des_Pythagoras" title="Satz des Pythagoras">Satz des Pythagoras</a>) <img src="
- https://wikimedia.org/api/rest_v1/media/math/render/svg/bd31e4054fb61f750fabfe34d37f445ce23cad37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:33.306ex; height:6.509ex;" alt="{\displaystyle \Leftrightarrow \left(x+{\frac {1}{x}}\right)^{2}\geq 2^{2}\Leftrightarrow x+{\frac {1}{x}}\geq 2}"> <img src="
Beweisvariante 4 (Figur 4):
- Nach dem <a href="/wiki/Strahlensatz" title="Strahlensatz">Strahlensatz</a> sind die <a href="/wiki/Dreieck" title="Dreieck">Dreiecke</a> https://wikimedia.org/api/rest_v1/media/math/render/svg/0e73d6f110c9dc2ee6ec8677a8e44f7e14ee3e37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.441ex; height:2.176ex;" alt="{\displaystyle DEF}"> und <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51aaac538474e68bf4652df3b42d258c164366e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.455ex; height:2.176ex;" alt="{\displaystyle DBC}"> <a href="/wiki/%C3%84hnlichkeit_(Geometrie)" title="Ähnlichkeit (Geometrie)">ähnlich</a>. Es gilt <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/182401d6027f4887112049d46472d2b5954a331c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:7.877ex; height:6.509ex;" alt="{\displaystyle {\frac {x}{1}}={\frac {1}{\frac {1}{x}}}}">. <a href="/wiki/Ohne_Beschr%C3%A4nkung_der_Allgemeinheit" title="Ohne Beschränkung der Allgemeinheit">Ohne Beschränkung der Allgemeinheit</a> wird hier <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ca3ced43f1713577888a8a7ade2d0aaf8354a4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.591ex; height:2.343ex;" alt="{\displaystyle x\geq 1}"> vorausgesetzt. <img src="
- https://wikimedia.org/api/rest_v1/media/math/render/svg/14fabbfc730293a6e715f07f44a4ff52061cef82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:72.489ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{2}}\cdot 1\cdot x+{\frac {1}{2}}\cdot 1\cdot {\frac {1}{x}}\geq 1\cdot 1\Leftrightarrow {\frac {x}{2}}+{\frac {1}{2x}}\geq 1\Leftrightarrow x^{2}+1\geq 2x\Leftrightarrow x+{\frac {1}{x}}\geq 2}"> <img src="
Summe zweier Kehrwerte
[<a href="/w/index.php?title=Kehrwert&veaction=edit§ion=4" title="Abschnitt bearbeiten: Summe zweier Kehrwerte" class="mw-editsection-visualeditor">Bearbeiten</a> | <a href="/w/index.php?title=Kehrwert&action=edit§ion=4" title="Quellcode des Abschnitts bearbeiten: Summe zweier Kehrwerte">Quelltext bearbeiten</a>]<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Kehrwertsumme_Planfigur.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Kehrwertsumme_Planfigur.svg/220px-Kehrwertsumme_Planfigur.svg.png" decoding="async" width="220" height="219" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Kehrwertsumme_Planfigur.svg/330px-Kehrwertsumme_Planfigur.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Kehrwertsumme_Planfigur.svg/440px-Kehrwertsumme_Planfigur.svg.png 2x" data-file-width="297" data-file-height="295" /></a><figcaption>Figur 5</figcaption></figure>
Die Summe der Kehrwerte zweier positiver reeller Zahlen https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"> und <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"> mit der Summe <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"> beträgt mindestens <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295b4bf1de7cd3500e740e0f4f0635db22d87b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 4}">: <img src="
- https://wikimedia.org/api/rest_v1/media/math/render/svg/3248531e2a57ff3479d1eac67299a17b088b686c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.166ex; height:5.343ex;" alt="{\displaystyle {\frac {1}{a}}+{\frac {1}{b}}\geq 4}"> für <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8a8061cad08a2f1206af42fb3e0389fcf4353e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.329ex; height:2.343ex;" alt="{\displaystyle a+b=1}">. <img src="
Beweis:
Gemäß Figur 5 gilt:
- https://wikimedia.org/api/rest_v1/media/math/render/svg/149079010eed654fc2f606f1a0f92ec6c346de20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:18.589ex; height:5.343ex;" alt="{\displaystyle 4ab\leq 1\Leftrightarrow {\frac {1}{ab}}\geq 4}"> <img src="
- https://wikimedia.org/api/rest_v1/media/math/render/svg/9c515c6b999f47ecbe6b512157fb97c0b4a4291b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:26.33ex; height:5.509ex;" alt="{\displaystyle {\frac {1}{a}}+{\frac {1}{b}}={\frac {a+b}{ab}}={\frac {1}{ab}}\geq 4}">, <img src="
<a href="/wiki/Quod_erat_demonstrandum" title="Quod erat demonstrandum">was zu beweisen war</a>.<a href="#cite_note-3">[3]</a>
Summe aufeinanderfolgender Kehrwerte
[<a href="/w/index.php?title=Kehrwert&veaction=edit§ion=5" title="Abschnitt bearbeiten: Summe aufeinanderfolgender Kehrwerte" class="mw-editsection-visualeditor">Bearbeiten</a> | <a href="/w/index.php?title=Kehrwert&action=edit§ion=5" title="Quellcode des Abschnitts bearbeiten: Summe aufeinanderfolgender Kehrwerte">Quelltext bearbeiten</a>]Für jede <a href="/wiki/Nat%C3%BCrliche_Zahl" title="Natürliche Zahl">natürliche Zahl</a> https://wikimedia.org/api/rest_v1/media/math/render/svg/ee74e1cc07e7041edf0fcbd4481f5cd32ad17b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n>1}"> gilt <img src="
- https://wikimedia.org/api/rest_v1/media/math/render/svg/da40156d1060ae455bc5c45838b258cad7ea1a98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:34.643ex; height:5.509ex;" alt="{\displaystyle {\frac {1}{n}}+{\frac {1}{n+1}}+{\frac {1}{n+2}}+...+{\frac {1}{n^{2}}}>1}">. <img src="
Den Beweis liefert die Abschätzung
- https://wikimedia.org/api/rest_v1/media/math/render/svg/38db5e46fb393fb9cc42f28547ec6f7e91241a7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:100.707ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{n}}+{\frac {1}{n+1}}+{\frac {1}{n+2}}+...+{\frac {1}{n^{2}}}>{\frac {1}{n}}+\left({\frac {1}{n^{2}}}+{\frac {1}{n^{2}}}+...+{\frac {1}{n^{2}}}\right)={\frac {1}{n}}+{\frac {1}{n^{2}}}\left(n^{2}-n\right)={\frac {1}{n}}+1-{\frac {1}{n}}=1}">.<a href="#cite_note-4"> <img src="[4]</a>
Beispiele
[<a href="/w/index.php?title=Kehrwert&veaction=edit§ion=6" title="Abschnitt bearbeiten: Beispiele" class="mw-editsection-visualeditor">Bearbeiten</a> | <a href="/w/index.php?title=Kehrwert&action=edit§ion=6" title="Quellcode des Abschnitts bearbeiten: Beispiele">Quelltext bearbeiten</a>]- Der Kehrwert von https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"> ist wiederum <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}">. <img src="
- Der Kehrwert von https://wikimedia.org/api/rest_v1/media/math/render/svg/37b02aa6542167e2202fec98516bf3237cd35b86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.297ex; height:2.509ex;" alt="{\displaystyle 0{,}001}"> ist <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9060e16491f890b9fbcce0194c8d454cbee309ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.65ex; height:2.176ex;" alt="{\displaystyle 1000}">. <img src="
- Der Kehrwert von https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"> ist <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0e7fd12728cb5e48baf2932b97faf654f0afa42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.728ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}=0{,}5}">. <img src="
- Der Kehrwert des Bruches https://wikimedia.org/api/rest_v1/media/math/render/svg/edb22be2c480d6bb96c97cc2b6a1a796f8396489" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:1.658ex; height:3.676ex;" alt="{\displaystyle {\tfrac {2}{5}}}"> ist <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6377800ff02edf1c0cf48ab2e6fb5568f2b6b640" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:13.647ex; height:3.509ex;" alt="{\displaystyle {\tfrac {5}{2}}=2{\tfrac {1}{2}}=2{,}5}">. <img src="
- Der Kehrwert der komplexen Zahl https://wikimedia.org/api/rest_v1/media/math/render/svg/b3ab335ff1f5595bf3cf91ef4241f78a48593ce2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.812ex; height:2.343ex;" alt="{\displaystyle 3+4\mathrm {i} }"> ist <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5abfc5e0e00b1a2871bd13d96da7cf097730a53b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:15.762ex; height:3.676ex;" alt="{\displaystyle {\tfrac {1}{3+4\mathrm {i} }}={\tfrac {3}{25}}-{\tfrac {4}{25}}\mathrm {i} }">. <img src="
Verallgemeinerung
[<a href="/w/index.php?title=Kehrwert&veaction=edit§ion=7" title="Abschnitt bearbeiten: Verallgemeinerung" class="mw-editsection-visualeditor">Bearbeiten</a> | <a href="/w/index.php?title=Kehrwert&action=edit§ion=7" title="Quellcode des Abschnitts bearbeiten: Verallgemeinerung">Quelltext bearbeiten</a>]Eine Verallgemeinerung des Kehrwerts ist das <a href="/wiki/Inverses_Element" title="Inverses Element">multiplikativ Inverse</a> https://wikimedia.org/api/rest_v1/media/math/render/svg/fbf91609f1a0b7847e108023b015cb6b0d567821" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.662ex; height:2.676ex;" alt="{\displaystyle x^{-1}}"> zu einer <a href="/wiki/Einheit_(Mathematik)" title="Einheit (Mathematik)">Einheit</a> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"> eines <a href="/wiki/Ring_(Algebra)" title="Ring (Algebra)">unitären Ringes</a>. Es ist ebenfalls durch die Eigenschaft <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa9f878a343f6121e1c85011d9146ce0a29921b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:21.863ex; height:2.676ex;" alt="{\displaystyle x^{-1}\cdot \ x=x\cdot \ x^{-1}=1}"> definiert, wobei <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"> das Einselement des Ringes bezeichnet. <img src="
Wenn es sich z. B. um einen Ring von Matrizen handelt, so ist das Einselement nicht die Zahl https://wikimedia.org/api/rest_v1/media/math/render/svg/9cc5fd8163a83100c5330622e9e317fa4e872403" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.809ex; height:2.509ex;" alt="{\displaystyle 1,}"> sondern die <a href="/wiki/Einheitsmatrix" title="Einheitsmatrix">Einheitsmatrix</a>. Matrizen, zu denen keine <a href="/wiki/Inverse_Matrix" title="Inverse Matrix">inverse Matrix</a> existiert, heißen <a href="/wiki/Singul%C3%A4re_Matrix" class="mw-redirect" title="Singuläre Matrix">singulär</a>. <img src="
Verwandte Themen
[<a href="/w/index.php?title=Kehrwert&veaction=edit§ion=8" title="Abschnitt bearbeiten: Verwandte Themen" class="mw-editsection-visualeditor">Bearbeiten</a> | <a href="/w/index.php?title=Kehrwert&action=edit§ion=8" title="Quellcode des Abschnitts bearbeiten: Verwandte Themen">Quelltext bearbeiten</a>]- Ist eine Größe <a href="/wiki/Proportionalit%C3%A4t" title="Proportionalität">proportional</a> zum Kehrwert einer anderen, liegt <a href="/wiki/Reziproke_Proportionalit%C3%A4t" title="Reziproke Proportionalität">reziproke Proportionalität</a> vor.
Literatur
[<a href="/w/index.php?title=Kehrwert&veaction=edit§ion=9" title="Abschnitt bearbeiten: Literatur" class="mw-editsection-visualeditor">Bearbeiten</a> | <a href="/w/index.php?title=Kehrwert&action=edit§ion=9" title="Quellcode des Abschnitts bearbeiten: Literatur">Quelltext bearbeiten</a>]Hintergrundwissen für Lehramtsstudenten zur Arithmetik:
- Friedhelm Padberg: Didaktik der Arithmetik. Für Lehrerausbildung und Lehrerfortbildung. 3. erweiterte völlig überarbeitete Auflage, Nachdruck. Spektrum Akademischer Verlag, München 2009, <a href="/wiki/Spezial:ISBN-Suche/9783827409935" class="internal mw-magiclink-isbn">ISBN 978-3-8274-0993-5</a>.
Weblinks
[<a href="/w/index.php?title=Kehrwert&veaction=edit§ion=10" title="Abschnitt bearbeiten: Weblinks" class="mw-editsection-visualeditor">Bearbeiten</a> | <a href="/w/index.php?title=Kehrwert&action=edit§ion=10" title="Quellcode des Abschnitts bearbeiten: Weblinks">Quelltext bearbeiten</a>]Einzelnachweise
[<a href="/w/index.php?title=Kehrwert&veaction=edit§ion=11" title="Abschnitt bearbeiten: Einzelnachweise" class="mw-editsection-visualeditor">Bearbeiten</a> | <a href="/w/index.php?title=Kehrwert&action=edit§ion=11" title="Quellcode des Abschnitts bearbeiten: Einzelnachweise">Quelltext bearbeiten</a>]- <a href="#cite_ref-1">↑</a> Roger B. Nelsen: Beweise ohne Worte, Deutschsprachige Ausgabe herausgegeben von Nicola Oswald, <a href="/wiki/Springer_Spektrum" title="Springer Spektrum">Springer Spektrum</a>, Springer-Verlag <a href="/wiki/Berlin" title="Berlin">Berlin</a> <a href="/wiki/Heidelberg" title="Heidelberg">Heidelberg</a> 2016, <a href="/wiki/Spezial:ISBN-Suche/9783662503300" class="internal mw-magiclink-isbn">ISBN 978-3-662-50330-0</a>, Seite 145
- <a href="#cite_ref-2">↑</a> Roger B. Nelsen: Proof without Words: The Sum of a Positive Number and Its Reciprocal Is at Least Two (four proofs) Mathematics Magazine, vol. 67, no. 5 (Dec. 1994), S. 374
- <a href="#cite_ref-3">↑</a> Claudi Alsina, Roger B. Nelsen: Perlen der Mathematik - 20 geometrische Figuren als Ausgangspunkte für mathematische Erkundungsreisen, <a href="/wiki/Springer_Spektrum" title="Springer Spektrum">Springer Spektrum</a>, Springer-Verlag GmbH <a href="/wiki/Berlin" title="Berlin">Berlin</a> 2015, <a href="/wiki/Spezial:ISBN-Suche/9783662454602" class="internal mw-magiclink-isbn">ISBN 978-3-662-45460-2</a>, Seiten 237 und 301
- <a href="#cite_ref-4">↑</a> <a href="/wiki/Ross_Honsberger" title="Ross Honsberger">Ross Honsberger</a>: Gitter - Reste - Würfel <a href="/wiki/Vieweg_Verlag" title="Vieweg Verlag">Friedrich Vieweg & Sohn Verlagsgesellschaft mbH</a>, <a href="/wiki/Braunschweig" title="Braunschweig">Braunschweig</a> 1984, <a href="/wiki/Spezial:ISBN-Suche/9783528084769" class="internal mw-magiclink-isbn">ISBN 978-3-528-08476-9</a>, S. 155
- <a href="/wiki/Kategorie:Division_(Mathematik)" title="Kategorie:Division (Mathematik)">Division (Mathematik)</a>
<footer id="footer" class="mw-footer" >
</footer>
<script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.eqiad.main-57c8968774-v9qg6","wgBackendResponseTime":146,"wgPageParseReport":{"limitreport":{"cputime":"0.189","walltime":"0.326","ppvisitednodes":{"value":913,"limit":1000000},"postexpandincludesize":{"value":5597,"limit":2097152},"templateargumentsize":{"value":1110,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":4565,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 115.686 1 -total"," 51.38% 59.445 1 Vorlage:Literatur"," 34.26% 39.637 1 Vorlage:Mehrere_Bilder"," 21.84% 25.262 8 Vorlage:Str_replace"," 21.43% 24.797 4 Vorlage:Mehrere_Bilder/Align"," 10.17% 11.763 1 Vorlage:Wiktionary"," 6.93% 8.019 1 Vorlage:Booland"," 1.98% 2.293 1 Vorlage:Absatz"]},"scribunto":{"limitreport-timeusage":{"value":"0.043","limit":"10.000"},"limitreport-memusage":{"value":1986840,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-cc877b49b-l4ht7","timestamp":"20241127132206","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Kehrwert","url":"https:\/\/de.wikipedia.org\/wiki\/Kehrwert","sameAs":"http:\/\/www.wikidata.org\/entity\/Q216906","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q216906","author":{"@type":"Organization","name":"Autoren der Wikimedia-Projekte"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-12-20T22:00:51Z","headline":"Begriff aus der Arithmetik"}</script> </body> </html>
- Potenzgesetze
- Potenzgesetze in einfacher Darstellung - automatischer Download
- Speziell zur Umwandlung von Logarithmen und log10
- Logarithmengesetze mit Beispielen und anklickbaren Lösungen
https://drive.google.com/drive/folders/1wNKPr9Cww3qrHnykiepCS6gl5CkquYkM