Johannes: Difference between revisions

From My Zacky Installer Website
Jump to navigation Jump to search
(Created page with "== 1.1 Wahrscheinlichkeitsrechnung und Statistik == == 1.121 Die Binomialverteilung == # [https://www.frustfrei-lernen.de/mathematik/binomialverteilung.html Einfache Einführung ins Thema] # [https://www.lernhelfer.de/schuelerlexikon/mathematik-abitur/artikel/definition-der-binomialverteilung# Einführung mit Verweis auf das zugrundeliegende Urnenmodel (Ziehen mit Zurücklegen)] # [https://www.klett.de/inhalt/media_fast_path/32/735310_Stochastik_Binomialverteilung_Kenn...")
 
No edit summary
Line 14: Line 14:
###3.1) Fläche unter Kurve, 2017-1, Teilaufgabe a)
###3.1) Fläche unter Kurve, 2017-1, Teilaufgabe a)
###Liegen zwei Vektoren auf einer Geraden?, Teilaufgabe c)
###Liegen zwei Vektoren auf einer Geraden?, Teilaufgabe c)
==1. Aufgabe: ==
In einer Urne befinden sich 8 Kugeln:
6 weiße und 2 schwarze.
Es wird nacheinander je eine Kugel gezogen.
Unterscheide:
a) mit Zurücklegen der gezogenen Kugel
b) ohne Zurücklegen der gezogenen Kugel
1. Zeichne den Ereignisbaum für die zwei Fälle.
2. Mit welcher Wahrscheinlichkeit wird zweimal eine schwarze Kugel gezogen?
3. Mit welcher Wahrscheinlichkeit wird keine schwarze Kugel gezogen?
4. Mit welcher Wahrscheinlichkeit wird mindestens einmal eine schwarze Kugel gezogen?
5. Für welchen Fall ist die Wahrscheinlichkeit größer, zweimal eine schwarze Kugel zu ziehen: mit
Zurücklegen oder ohne Zurücklegen?
2. Aufgabe
Du würfelst mit einem Würfel zweimal hintereinander.
1. Wie hoch ist die Wahrscheinlichkeit, jedes Mal die
gleiche Zahl zu würfeln?
2. Wie viele Äste gibt es in dem Ereignisbaum?
3. Wie hoch ist Wahrscheinlichkeit, als Augensumme
mindestens 10 zu würfeln?
4. Du möchtest für ein Gewinnspiel eine Gewinn-Wahrscheinlichkeit von maximal 20%. Wir
würfeln 2x auf maximale Augensumme. Bei welcher Augensumme werden die 20%
Gewinnwahrscheinlichkeit nicht überschritten?
=2. Aufgabe=
Du würfelst mit einem Würfel zweimal hintereinander.
1. Wie hoch ist die Wahrscheinlichkeit, jedes Mal die
gleiche Zahl zu würfeln?
2. Wie viele Äste gibt es in dem Ereignisbaum?
3. Wie hoch ist Wahrscheinlichkeit, als Augensumme
mindestens 10 zu würfeln?
4. Du möchtest für ein Gewinnspiel eine Gewinn-Wahrscheinlichkeit von maximal 20%. Wir
würfeln 2x auf maximale Augensumme. Bei welcher Augensumme werden die 20%
Gewinnwahrscheinlichkeit nicht überschritten?

Revision as of 07:48, 24 May 2023

1.1 Wahrscheinlichkeitsrechnung und Statistik

1.121 Die Binomialverteilung

  1. Einfache Einführung ins Thema
  2. Einführung mit Verweis auf das zugrundeliegende Urnenmodel (Ziehen mit Zurücklegen)
  3. Erwartungswert und Standardabweichung einer Binomialverteilung

Aufgaben am 24.05.2023

  1. Abitur 2018:
    1. Binomialverteilung (leicht): Seite 17, Teilaufgabe d)
    2. Keine Binomialverteilung, daher mit Übergangsgraph zu errechnen: Seite 25, Teilaufgabe c. (vielleicht nehmen)
    3. Binomialverteilung, 2017-2, Teilaufgabe d)
      1. 3.1) Fläche unter Kurve, 2017-1, Teilaufgabe a)
      2. Liegen zwei Vektoren auf einer Geraden?, Teilaufgabe c)

1. Aufgabe:

In einer Urne befinden sich 8 Kugeln: 
6 weiße und 2 schwarze. 
Es wird nacheinander je eine Kugel gezogen. 
Unterscheide: 
a) mit Zurücklegen der gezogenen Kugel 
b) ohne Zurücklegen der gezogenen Kugel 
1. Zeichne den Ereignisbaum für die zwei Fälle. 
2. Mit welcher Wahrscheinlichkeit wird zweimal eine schwarze Kugel gezogen? 
3. Mit welcher Wahrscheinlichkeit wird keine schwarze Kugel gezogen? 
4. Mit welcher Wahrscheinlichkeit wird mindestens einmal eine schwarze Kugel gezogen? 
5. Für welchen Fall ist die Wahrscheinlichkeit größer, zweimal eine schwarze Kugel zu ziehen: mit 
Zurücklegen oder ohne Zurücklegen? 
2. Aufgabe
Du würfelst mit einem Würfel zweimal hintereinander. 
1. Wie hoch ist die Wahrscheinlichkeit, jedes Mal die 
gleiche Zahl zu würfeln? 
2. Wie viele Äste gibt es in dem Ereignisbaum? 
3. Wie hoch ist Wahrscheinlichkeit, als Augensumme 
mindestens 10 zu würfeln? 
4. Du möchtest für ein Gewinnspiel eine Gewinn-Wahrscheinlichkeit von maximal 20%. Wir 
würfeln 2x auf maximale Augensumme. Bei welcher Augensumme werden die 20% 
Gewinnwahrscheinlichkeit nicht überschritten?

2. Aufgabe

Du würfelst mit einem Würfel zweimal hintereinander. 
1. Wie hoch ist die Wahrscheinlichkeit, jedes Mal die 
gleiche Zahl zu würfeln? 
2. Wie viele Äste gibt es in dem Ereignisbaum? 
3. Wie hoch ist Wahrscheinlichkeit, als Augensumme 
mindestens 10 zu würfeln? 
4. Du möchtest für ein Gewinnspiel eine Gewinn-Wahrscheinlichkeit von maximal 20%. Wir 
würfeln 2x auf maximale Augensumme. Bei welcher Augensumme werden die 20% 
Gewinnwahrscheinlichkeit nicht überschritten?